Graph Imperfection with a Co-Site Constraint

نویسندگان

  • Stefanie Gerke
  • Colin McDiarmid
چکیده

We are interested in a version of graph colouring where there is a ‘co-site’ constraint value k. Given a graph G with a non-negative integral demand xv at each node v, we must assign xv positive integers (colours) to each node v such that the same integer is never assigned to adjacent nodes, and two distinct integers assigned to a single node differ by at least k. The aim is to minimise the span, that is the largest integer assigned to a node. This problem is motivated by radio channel assignment where one has to assign frequencies to transmitters so as to avoid interference. We compare the span with a clique-based lower bound when some of the demands are large. We introduce the relevant graph invariant, the k-imperfection ratio, give equivalent definitions and investigate some of its properties. The k-imperfection ratio is always at least 1: we call a graph k-perfect when it equals 1. Then 1-perfect is the same as perfect; and we see that for many classes of perfect graphs, each graph in the class is k-perfect for all k. These classes include comparability graphs, co-comparability graphs and line-graphs of bipartite graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing Imperfection Ratio and Imperfection Index for Graph Classes

Perfect graphs constitute a well-studied graph class with a rich structure, reflected by many characterizations with respect to different concepts. Perfect graphs are, for instance, precisely those graphs G where the stable set polytope STAB(G) coincides with the fractional stable set polytope QSTAB(G). For all imperfect graphs G it holds that STAB(G) ⊂ QSTAB(G). It is, therefore, natural to us...

متن کامل

Automatic Frequency Assignment for Cellular Telephones Using Constraint Satisfaction Techniques

We study the problem of automatic frequency assignment for cellular telephone systems. The frequency assignment problem is viewed as the problem to minimize the unsatisfied soft constraints in a constraint satisfaction problem (CSP) over a finite domain of frequencies involving co-channel, adjacent channel, and co-site constraints. The soft constraints are automatically derived from signal stre...

متن کامل

On determining the imperfection ratio

Perfect graphs constitute a well-studied graph class with a rich structure, reflected by many characterizations w.r.t different concepts. Perfect graphs are, e.g., characterized as precisely those graphs G where the stable set polytope STAB(G) coincides with the clique constraint stable set polytope QSTAB(G). For all imperfect graphs STAB(G) ⊂ QSTAB(G) holds and, therefore, it is natural to mea...

متن کامل

Graph Convergence for H(.,.)-co-Accretive Mapping with over-Relaxed Proximal Point Method for Solving a Generalized Variational Inclusion Problem

In this paper, we use the concept of graph convergence of H(.,.)-co-accretive mapping introduced by [R. Ahmad, M. Akram, M. Dilshad, Graph convergence for the H(.,.)-co-accretive mapping with an application, Bull. Malays. Math. Sci. Soc., doi: 10.1007/s40840-014-0103-z, 2014$] and define an over-relaxed proximal point method to obtain the solution of a generalized variational inclusion problem ...

متن کامل

The extreme points of QSTAB(G) and its implications

Perfect graphs constitute a well-studied graph class with a rich structure, reflected by many characterizations w.r.t different concepts. Perfect graphs are, e.g., characterized as precisely those graphs G where the stable set polytope STAB(G) coincides with the clique constraint stable set polytope QSTAB(G). For all imperfect graphs STAB(G) ⊂ QSTAB(G) holds and, therefore, it is natural to mea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2004